
1

WriteTree.py family tree writer

WriteTree.py is an extremely efficient recursive program which writes family tree data to a text file
in a format suitable for display as a transposed generation table. The program is written in Python;
the source data are stored using MySQL; the output data are written as comma-separated values
(CSV) in a text file; and all operations are undertaken in an Ubuntu Linux (UL) environment
running on a Windows 11 (W11) computer by means of the Microsoft Windows Subsystem for
Linux (WSL) utility. These various features and developments are summarised in four appendices:

1. W11 installation and initial setup of WSL, UL, MySQL, and Python
2. Source data preparation
3. WriteTree.py script
4. Sample output

R D Kingdon
Windows 10 implementation March 2022, revised December 2022
Windows 11 implementation April 2024

2

Appendix 1. W11 installation and initial setup of WSL, UL, MySQL, and Python

The following prompts refer to: Windows 11 desktop (W11); Powershell as Administrator (PA);
Powershell as User (PU); Ubuntu Linux shell (UL); and MySQL command environment (MS).

WSL activation
W11: Start icon; Search for Powershell; Select Run as Administrator
PA: dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-
Linux /all /norestart
PA: dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all
/norestart
W11: Exit all processes; Restart; Start icon; Settings; Find a setting; Turn Windows features on or
off; Verify that Windows Subsystem for Linux and Virtual Machine Platform are checked
W11: Start icon; Search for Windows Powershell; Run as User
PU: wsl.exe --update The most recent version of Windows Subsystem for Linux is
already installed.
PU: wsl --status Default Distribution: Ubuntu | Default Version: 2

Ubuntu installation and initial setup
W11: Start icon; Search for and select Windows Store; In Windows Store, search for and get
Ubuntu; When prompted, launch Ubuntu
UL: Specify new UNIX username and password as required
UL: sudo apt-get update
UL: sudo apt-get upgrade; Implement updates as required
UL: sudo apt update All packages are up to date
UL: lsb_release -a Ubuntu 22.04.4 LTS

Accessing UL filespace from W11, and vice versa
W11 File Explorer: Ctrl-l then \\wsl$ in the address box enables direct access to UL filespace
UL: cd /mnt/c/Users likewise enables direct access to W11 user filespace
UL: sudo apt install dos2unix; This utility must be used to reformat any text files that have
been prepared in W11 and ported to UL, using syntax dos2unix filename

MySQL installation and initial setup
UL: sudo apt install mysql-server
UL: mysql --version mysql Ver 8.0.36-0ubuntu0.22.04.1 for Linux on x86_64
((Ubuntu))
UL: sudo service mysql start
UL: sudo mysql
MS: CREATE DATABASE FamilyDB;
MS: CREATE USER 'Genealogist'@'localhost';
MS: GRANT ALL PRIVILEGES ON *.* TO 'Genealogist'@'localhost' WITH GRANT OPTION;
MS: exit Bye

Python installation and initial setup
UL: python3 -V Python 3.10.12
UL: sudo apt install python3-pip
UL: pip install mysql-connector-python Successfully installed mysql-connector-
python-8.3.0
UL: exit

3

Appendix 2. Source data preparation

For testing purposes I used the same dataset (based on The Kingdon Family Charts I-VIII) as my
older Microsoft Access 2000 application, see https://idealectic.com/idealectic/Genealogy.htm
This was read into Microsoft Excel 2000 in order to further refine the data model, resulting in
worksheets {Persons, Spouses, Childes}:

https://idealectic.com/idealectic/Genealogy.htm

4

These three worksheets were then saved as CSV files {Persons.csv, Spouses.csv, Childes.csv}:

5

6

These three CSV files were then copied to the UL environment where they were uploaded to the
MySQL database by means of Bash script FamilyDBSetup.sh, as follows:
UL: dos2unix *
UL: chmod a+x *
UL: sudo service mysql start
UL: ./FamilyDBSetup.sh

#! /bin/bash

What: Bash script FamilyDBSetup.sh
Where: FamilyDB
When: 8 March 2022
Who: Roger Kingdon
Why: Script to create and populate FamilyDB tables
How: ./FamilyDBSetup.sh [rtn]

echo -e "SET GLOBAL local_infile = 1;" > tmp1.bat
echo -e "USE FamilyDB;\n"\
"CREATE TABLE Persons (PerID VARCHAR(50) PRIMARY KEY, Mnemonic VARCHAR(50) NOT
NULL, "\
"Surname VARCHAR(50) NOT NULL, KnownAs VARCHAR(50) NOT NULL, GivenNames
VARCHAR(50) NOT NULL, "\
"Male BOOLEAN NOT NULL, Birth VARCHAR(50) DEFAULT '', Death VARCHAR(50) DEFAULT
'');\n"\
"CREATE TABLE Spouses (PerID VARCHAR(50) NOT NULL, SpID VARCHAR(50) NOT NULL, "\
"Seq INTEGER NOT NULL, Notes VARCHAR(50) DEFAULT '');\n"\
"CREATE TABLE Childes (PerID VARCHAR(50) NOT NULL, ChID VARCHAR(50) NOT NULL,
"\
"Seq INTEGER NOT NULL, Notes VARCHAR(50) DEFAULT '');\n"\
"LOAD DATA LOCAL INFILE 'Persons.csv' INTO TABLE Persons FIELDS TERMINATED BY
',';\n"\
"LOAD DATA LOCAL INFILE 'Spouses.csv' INTO TABLE Spouses FIELDS TERMINATED BY
',';\n"\
"LOAD DATA LOCAL INFILE 'Childes.csv' INTO TABLE Childes FIELDS TERMINATED BY
',';"\
> tmp2.bat
mysql --local_infile=1 -u Genealogist < tmp1.bat
mysql --local_infile=1 -u Genealogist < tmp2.bat
rm tmp*.bat

7

Appendix 3. WriteTree.py script

WriteTree.py may be executed in the UL environment as follows:
UL: sudo service mysql start
UL: ./WriteTree.py

#! /usr/bin/python3

What: Python script WriteTree.py
Where: FamilyDB
When: 8 March 2022
Who: Roger Kingdon
Why: Writes family tree for nominated person to nominated output file
How: Specify user-defined parameters; ./WriteTree.py [rtn]

User-defined parameters
blnTree = True or False generates family tree headed by an ancestor or a
descendant respectively
strHead is the head person ID (e.g. "Kingdon01" or "Kingdon06.1.2.2.2" for
blnTree = True or False respectively)
strFile is the output file name

blnTree = True
strHead = "Kingdon01"
strFile = "Family.txt"

End of user-defined parameters

Spouses: Returns a text string naming nominated person and their spouse(s)

def Spouses(strID):
 strQ = "SELECT * FROM Persons WHERE Persons.PerID='" + strID + "'"
 cursor.execute(strQ)
 strRT = cursor.fetchall()
 for strR in strRT:
 strS = "[" + strR[1] + "] " + strR[4] + " " + strR[2]
 strB = strR[6]
 strD = strR[7]
 blnBD = False
 if (strB != ""):
 strB = strB[-4:]
 blnBD = True
 if (strD != ""):
 strD = strD[-4:]
 blnBD = True
 if (blnBD):
 strS = strS + " (" + strB + "-" + strD + ")"

 strQ = "SELECT Persons.*, Spouses.Seq FROM Spouses INNER JOIN Persons ON
Spouses.SpID = Persons.PerID WHERE Spouses.PerID='" + strID + "' ORDER BY
Spouses.Seq"
 cursor.execute(strQ)
 strRT = cursor.fetchall()
 for strR in strRT:
 strS = strS + " m" + str(strR[8]) + " [" + strR[1] + "] " + strR[4] + " " +
strR[2]
 strB = strR[6]
 strD = strR[7]
 blnBD = False
 if (strB != ""):
 strB = strB[-4:]

8

 blnBD = True
 if (strD != ""):
 strD = strD[-4:]
 blnBD = True
 if (blnBD):
 strS = strS + " (" + strB + "-" + strD + ")"

 return strS

End of Spouses

WriteGens: Recursively writes related generations of nominated person to
nominated output file

def WriteGens(strGen0, strID0):
 strGen = strGen0 + ","
 if (blnTree):
 strQ = "SELECT Childes.ChID FROM Childes WHERE Childes.PerID='" + strID0 +
"' ORDER BY Childes.Seq"
 else:
 strQ = "SELECT Childes.PerID FROM Childes INNER JOIN Persons ON
Childes.PerID = Persons.PerID WHERE Childes.ChID='" + strID0 + "' ORDER BY
Persons.Male DESC"
 cursor.execute(strQ)
 strRT = cursor.fetchall()
 for strR in strRT:
 strID = strR[0]
 txtOut.write(strGen + Spouses(strID) + "\n")
 WriteGens(strGen, strID)

End of WriteGens

Start of WriteTree.py execution

from mysql.connector import connect
connection = connect(host="localhost", user="Genealogist", database="FamilyDB")
cursor = connection.cursor()
txtOut = open(strFile, "a+")

strGen = ""
strQ = "SELECT PerID FROM Persons WHERE Persons.PerID='" + strHead + "'"
cursor.execute(strQ)
strRT = cursor.fetchall()
for strR in strRT:
 strID = strR[0]
 if (strID == strHead):
 txtOut.write(strGen + Spouses(strID) + "\n")
 WriteGens(strGen, strID)

txtOut.close()
cursor.close()
connection.close()

End of WriteTree.py execution

9

Appendix 4. Sample output

Running Python script WriteTree.py generates output file Family.txt:

10

Once it has been copied to the W11 user filespace, Family.txt may be opened in Microsoft Excel
(with comma-delimited fields) to display the family tree as a transposed generation table:

This is the required output.

